
 Journal of Fluids and Structures  (1997)  11 ,  89 – 109

 NONLINEAR BEHAVIOR OF A TYPICAL AIRFOIL
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 A three degree-of-freedom aeroelastic typical section with control surface freeplay is
 modeled theoretically as a system of piecewise linear state-space models .  The system
 response is determined by time marching of the governing equations using a standard
 Runge – Kutta algorithm in conjunction with He ́  non’s method for integrating a system of
 equations to a prescribed surface of phase space section .  He ́  non’s method is used to locate
 the ‘‘switching points’’ accurately and ef ficiently as the system moves from one linear
 region into another .  An experimental model which closely approximates the three
 degree-of-freedom typical section in two-dimensional ,  incompressible flow has been
 created to validate the theoretical model .  Consideration is given to modeling realistically
 the structural damping present in the experimental system .  The ef fect of the freeplay on
 the system response is examined numerically and experimentally .  The development of the
 state – space model of fers a low-order ,  computationally ef ficient means of modeling fully
 the freeplay nonlinearity and may of fer advantages in future research which will investigate
 the ef fects of freeplay on the control of flutter in the typical section .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 E ARLY   THEORETICAL   STUDIES   OF   AEROELASTIC   SYSTEMS  with structural freeplay were
 carried out on analog computers (Woolston  et al .  1955 ,  1957 ;  McIntosh  et al .  1981) ,  by
 linearizing the system about the nonlinearity via describing functions or harmonic
 balance (Shen 1959 ;  Breitbach 1977 ;  Laurenson & Trn 1980 ;  Yang & Zhao 1988 ;
 Hauenstein  et al .  1992 ,  Tang & Dowell 1992 ,  Price  et al .  1995) ,  or by time marching
 integration (Lee & LeBlanc 1986 ;  Lee & Desrochers 1987 ;  Yang & Zhao 1988 ;  Kousen
 & Bendiksen 1994 ;  Price  et al .  1994 ,  1995) .  One of the compelling advantages of using
 harmonic balance or describing functions for aeroelastic systems is that traditional
 linear analytical tools ,  such as eigenanalysis ,  can be used for the determination of
 system stability while still allowing for the prediction of some nonlinear behavior .
 However ,  the response of a true nonlinear system may be dependent on the initial
 conditions ,  and the describing function approach does not permit a full exploration of
 this ef fect .  The dependence on initial conditions and the wide variety of nonlinear
 behavior exhibited by systems with freeplay show the importance of incorporating this
 common physical nonlinearity into the theoretical model .  In addition ,  the freeplay
 nonlinearity will likely have a significant ef fect on the response of the system to a
 control law designed for the nominal linear system .

 A theoretical model capable of incorporating the full ef fects of the structural
 nonlinearity without sacrificing computational ease and ef ficiency is desirable .  The
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 Figure 1 .  Schematic of the aeroelastic typical section with control surface .

 describing function approach falls short of this goal for two primary reasons :  (i)
 depending on the type of nonlinearity being considered ,  a significant amount of
 analytical work may be required to develop the form of the describing function prior to
 actually building the numerical model ;  and (ii) this technique requires the assumption
 that system motion will be harmonic ,  thus disallowing any non-periodic and transient
 solutions .  As a result of the harmonic assumption ,  periodic limit cycle behavior is the
 only type of nonlinear solution that can be predicted .  It should be noted that
 higher-order harmonic terms can be retained in the harmonic balance model ,  allowing
 for periodic responses other than simple harmonic motion .

 The theoretical model which has been developed here is based on the state-space
 model proposed by Edwards  et al .  (1979) for the three degree-of-freedom aeroelastic
 typical section shown in Figure 1 .  Since the freeplay nonlinearity produces a piecewise
 linear change in the structural stif fness of the control surface ,  as shown in Figure 2 ,  the
 overall system can be represented as a nonlinear combination of three linear systems .
 The response can be determined via numerical integration ,  updating the equations of
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 Figure 2 .  Restoring moment due to  K b   with a symmetric freeplay region about  b  5  0 .  d   is defined as the
 size of the freeplay region .
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 motion as the system moves from one linear region into the next .  It is crucial that the
 system be integrated to the exact point where the change in stif fness occurs .  The
 importance of locating this ‘‘switching point’’ was addressed by Lin & Cheng
 (1993a ,  b) .  In those references ,  a similar state – space model was developed using an
 alternative integration scheme .  Comparisons were made with the results of a describing
 function approach ,  but no experimental verification was given .

 An experimental model designed to simulate the three degree-of-freedom aeroelastic
 typical section in two-dimensional ,  incompressible flow has also been developed .
 Nonlinear flutter phenomena including limit-cycle oscillations and chaotic motion in a
 typical two or three degree-of-freedom airfoil with a freeplay structural nonlinearity in
 wing torsion or control surface rotation have been studied theoretically by several
 authors .  Wind tunnel flutter model tests to validate nonlinear aeroelastic theory and
 establish nonlinear flutter trends have also been conducted .  The results from these
 theoretical and experimental investigations are given in Woolston  et al .  (1957) ,
 Breitbach (1977) ,  McIntosh  et al .  (1981) ,  Turner (1982) ,  Yang & Zhao (1988) ,  Lee &
 Tron (1989) ,  Tang & Dowell (1992) ,  Kousen & Bendiksen (1994) and Price  et al .
 (1994) .

 In incompressible two-dimensional flow ,  limit-cycle oscillations and chaotic motion
 were obtained for airspeeds well below the linear flutter boundary for a two-
 dimensional airfoil with a freeplay nonlinearity in torsion .  The limited amplitude flutter
 was strongly dependent on the initial conditions of the airfoil (McIntosh  et al .  1981 ;
 Yang & Zhao 1988 ;  Lee & Tron 1989 ;  Tang & Dowell 1992 ;  Price  et al .  1994) .

 The goals of the present experimental work are to :
 (a)  experimentally study limited amplitude flutter behavior for a three degree-of-

 freedom airfoil subject to two-dimensional incompressible flow with a structural
 freeplay nonlinearity in the control surface ;

 (b)  develop an experimental model that is capable of producing high-quality
 measurement data ;

 (c)  examine theoretical / experimental correlation for evaluating a new prediction
 method ;

 (d)  provide a foundation for experimental studies into the control of systems with
 freeplay nonlinearities .

 2 .  STATE-SPACE MODEL

 The equations of motion for the three degree-of-freedom typical section are cast in the
 state – space form proposed by Edwards  et al .  (1979) .  This format ,  shown in equation
 (1) ,  includes two ‘‘augmented’’ states required for Jones’ approximation of Wagner’s
 indicial loading function which yields an approximation to the generalized Theodorsen
 function .  Since the aeroelastic typical section has three degrees of freedom ,  there are
 six structural states in addition to the two augmented aerodynamic states .  Therefore ,   A
 is an 8  3  8 matrix ,  which can be handled easily numerically .  The quantity  a  represents a
 constant of fset vector which is used in the freeplay model .  The of fset is required due to
 the fact that the curves for the restoring moment in the stif fer regions [regions (1) and
 (3) in Figure 2] do not pass through the origin .  The state – space model is

 x Ù  5  Ax  1  B u  1  a ,  (1)

 where  B  is the control coef ficient matrix and  u  is the scalar command input .
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 The general form of the  A  matrix is given below ,  with the specific form of the
 submatrices given in Edwards  et al .  (1979) :

 A  5 3  0
 2 M 2 1

 tot K tot

 E 1

 I
 2 M 2 1

 tot B tot

 E 2

 0
 M 2 1

 tot D
 F a

 4
 8 3 8

 .  (2)

 The ‘‘tot’’ subscript represents the total values of mass ,  damping and stif fness ,
 comprised of structural and aerodynamic components .  For the system with freeplay ,  all
 of the components of the  A  matrix are the same in the stif f and freeplay regions except
 for the  K tot  submatrix .  In the freeplay region ,  the control surface provides no structural
 contribution to the system stif fness .

 The coef ficient matrix  A ,  for regions (1) and (3) in Figure 2 is the same ;  however ,  the
 value of the of fset vector ,   a ,  dif fers .  Region (2) has a dif ferent coef ficient matrix and
 of fset vector .  Note that preload can be incorporated through the of fset vectors .

 The  B  matrix is given by

 B  5 3  0
 M 2 1

 tot G
 0
 4

 8 3 1

 ,  (3)

 where

 G  5 3  0
 K b

 0
 4

 3 3 1

 .  (4)

 The input ,   u ,  is a scalar command input to the flap specifying position .  The full state
 vector ,   x ̂  ,  is given by

 x ̂  5 3  x
 x Ù
 x a
 4

 8 3 1

 ,  (5)

 where  x  5  [ a  ,  b  ,  h ] T  and  x a  represents the two augmented states required for the
 aerodynamics .

 3 .  STRUCTURAL DAMPING MODEL

 Theodorsen & Garrick (1941) examined the necessity of including at least a minimal
 amount of structural damping in flutter calculations .  An attempt has been made here to
 include structural damping in the numerical model in a logical and physically
 meaningful way .  Measurements of the structural damping present in the experimental
 system were made by isolating each degree of freedom ,  perturbing the model and
 recording the motion as the model returned to equilibrium in the absence of a
 freestream .  The recorded time histories for each degree of freedom were then used to
 determine the corresponding damping ratio ,  based on logarithmic decrement calcula-
 tions (Thomson 1988) .

 A one-term viscous damping model is used to characterize the structural damping
 present in the system .  The dry friction in the system is assumed to be negligible .  The
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 measured damping ratios are treated as modal damping ratios in the numerical model ,
 which leads to the following modal damping matrix :

 B mod  5 3  2 m a v a z a

 0
 0

 0
 2 m b v b z b

 0

 0
 0

 2 m h v h z h
 4

 3 3 3

 ,  (6)

 where  m  represents the modal mass for each degree of freedom (per unit span) ,   v
 represents the coupled natural frequency and  z   is the measured damping ratio .  The
 modal mass ,  modal stif fness and coupled natural frequencies can be calculated based
 on the measured mass and stif fness parameters .  The modal damping matrix ,   B mod ,  is
 then transformed back to the [ a  ,  b  ,  h ] coordinate system ,  yielding the structural
 portion of the total damping submatrix ( B t o t ) .  This structural damping matrix ,   B s ,  is
 fully populated in general ,  providing coupling in the structural damping ,  as well as in
 the structural mass .  The design of the experimental system is such that the coupling of
 the structural stif fness may be considered to be negligible .

 4 .  NUMERICAL INTEGRATION

 A key issue in the numerical integration of a piecewise linear system is accurately
 integrating to the ‘‘switching points’’ where the change in linear subdomains occurs .
 He ́  non’s method (He ́  non 1982) for integrating state-space equations onto a specified
 surface of section has been adapted for the location of the switching points in the
 freeplay model .  The method involves integrating the system until a change in linear
 subdomains is detected .  At that time ,  the distance the system has traveled into the new
 subdomain is known .  By exchanging the dependent variable of interest (control surface
 location ,  in this case) and independent variable ,  the system of equations can be
 integrated ‘‘in space’’ from its current location back to the exact point of discontinuity .
 This integration step yields the remaining states of the system as well as the time at
 which the change in subdomains occurs .  At this point ,  time can again be made the
 independent variable and these values can be used along with the state – space
 equations for the new subdomain to integrate the system ,  until another discontinuity is
 encountered .

 The details of this procedure to account for the abrupt stif fness change are given in
 Connor  et al .  (1996a) .  He ́  non’s method allows for the accurate location of the switching
 point between the linear subdomains in one integration step ,  as opposed to using
 adaptive time steps and linear interpolation or bisection (Bayly & Virgin 1991 ;  Lin &
 Cheng 1993a ,  b) .

 5 .  STABILITY ANALYSIS

 For a linear system in the form given by equation (1) ,  the eigenvalues of the  A  matrix
 determine the stability of the system .  As long as the real part of each eigenvalue is
 negative ,  the system is stable .  When the real part of any one eigenvalue (or complex
 pair) becomes positive ,  the entire system becomes unstable .  Figure 3 shows the
 graphical representation of the eigenanalysis in the form of a root-locus plot for the
 nominal linear system (without freeplay) examined in this study as the freestream
 velocity increases from 0 to 25  m / s ,  with flutter occurring at a speed of 23 ? 9  m / s .

 In contrast to the nominal linear system ,  there is no simple way to determine
 quantitatively the stability of the piecewise linear system by analysing the system
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 Figure 3 .  Root-locus plot of for the nominal linear system as the freestream velocity increases from 0 to
 25  m / s .  The numerical flutter velocity is 23 ? 9  m / s and flutter frequency is 6 ? 1  Hz .

 matrices .  Time-series information based on numerical integration is often used to
 determine the relative stability of the motion for nonlinear systems .  A Poincare ́   map
 can be used to quantify the stability of limit-cycle oscillations .  Once the system has
 reached the steady-state limit cycle ,  it can be perturbed ,  and an estimate of the
 Jacobian matrix based on the Poincare ́   section can be calculated (Dennis & Schnabel
 1983 ;  Murphy  et al .  1994 ;  Conner  et al .  1996b) .  Linear eigenanalysis of the Jacobian
 matrix can then be performed to determine the relative stability of the system .  This
 technique works very well for quantifying periodic limit cycle behavior ;  however ,  it is
 inappropriate for non-periodic steady-state motion .

 6 .  DESCRIPTION OF EXPERIMENT

 All flutter tests of the two-dimensional wing model with control surface freeplay were
 performed in the Duke University low speed wind tunnel .  The wind tunnel is a closed
 circuit tunnel with a test-section of 0 ? 701  m  3  0 ? 506  m and a length of 1 ? 219  m .  The
 maximum attainable air speed is 89  m / s .  The stagnation temperature of the airstream is
 held constant over the range 15 to 38 8 C by means of an external air-exchange system ,
 and tunnel stagnation pressure equals the atmospheric pressure at the low Reynolds
 number operating conditions .  For the present test ,  the Reynolds number based upon
 model chord was 0 ? 52  3  10 6 .

 The flutter model is mounted in a vertical position in the center of the test-section .
 The clearance between the tips of the wing and the floor and ceiling of the tunnel is less
 than 0 ? 32  cm .  As a result ,  any vortical flow ef fects are assumed to be negligible .  The
 vertical positioning of the model eliminates gravitational preload in the nonlinear
 system .  A photograph of the wind tunnel model is shown in Figure 4(a) .

 7 .  FLUTTER MODEL

 The two-dimensional NACA 0012 rectangular wing model includes two parts :  a main
 wing with a 19  cm chord and 52  cm span ;  and a flap with a 6 ? 35  cm chord and 52  cm
 span ,  which is mounted at the trailing edge of the main wing using two pairs of
 micro-bearings with a pin .  The main wing is constructed from an aluminum alloy
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 Figure 4 .  (a) Photograph and (b) schematic ,  showing top views of the experimental model and the support
 structure ,  as mounted in the Duke University low-speed wind tunnel .

 circular spar beam with a diameter of 2 ? 54  cm and a wall thickness of 0 ? 32  cm .  The
 beam runs through 14 pieces of NACA 0012 aluminum airfoil plate and serves as the
 pitch axis ,  located at the quarter-chord location from the leading edge .  A 0 ? 254  mm
 thick aluminum sheet covers the entire chord and span ,  providing the aerodynamic
 contour of the wing .  In addition ,  an aluminum tube with 1 ? 27  cm diameter is mounted
 from wing tip to wing tip at a location of 3 ? 175  cm from the leading edge .  The
 chordwise center of gravity can be adjusted by adding or subtracting a balance weight
 from this tube .

 The flap is constructed in a similar manner with an aluminum alloy tube spar beam
 (1 ? 27  cm diameter and 0 ? 158  cm wall-thickness) passed through the leading edge of 14
 pieces of NACA 0012 wood airfoil plate .  The flap is also covered with the same type of
 aluminum sheet .

 A rotational axis comprised of the micro-bearings and pin allows the flap to have a
 rotational degree of freedom relative to the main wing .  A steel leaf-spring is inserted
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 tightly into a slot of the tube spar beam at one end of the flap .  The free end of the leaf
 spring is inserted into a support block mounted on the main wing .  The amount of
 structural stif fness that the leaf-spring provides can be adjusted by moving the support
 block toward or away from the rotational axis of the flap or by changing the diameter
 of the leaf-spring .  Freeplay is incorporated by using a support block that allows the free
 end of the leaf-spring to move through a given range of motion before encountering
 resistance .  A schematic of the leaf spring assembly for the control surface (with
 freeplay) is shown in Figure 5 .

 The support mechanisms for the entire model are mounted outside of the wind
 tunnel ,  at the top and bottom .  The support mechanism at each end is a bi-cantilever
 beam made of two steel leaf-springs which are 20 ? 32  cm long ,  2 ? 86  cm wide ,  and
 0 ? 102  cm thick .  The distance between the two cantilever beams is 15 ? 24  cm .  A support
 block joins the free ends of the bi-cantilevered beams on both the top and the bottom
 and is free to move in the plunge direction .  Figure 4 shows a photograph of the upper
 support mechanism and a schematic showing the plunging motion of the support
 structure .  An identical structure is located on the bottom side of the wind tunnel .  The
 two support blocks are the only parts of the support mechanism that move with the
 model ,  and this motion is restricted to the plunge degree of freedom .  The pitch axis of
 the main wing is mounted to the upper and lower support blocks through a pair of
 precision bearings which have a small amount of dry friction in the ball .  This design
 allows the model to have a plunge motion that is independent of the pitch degree of
 freedom .  At the upper bracket ,  there is a spring wire inserted tightly into the pitch axis
 of the wing .  The ends of the spring wire are simply supported on the bracket ,  which
 provides an adjustable pitch stif fness .

 8 .  MEASUREMENT AND DATA ACQUISITION

 The pitch angle of the main wing is measured by a rotational velocity displacement
 transducer ,  RVDT ,  which is fixed at the upper end of the pitch axis .  The angular
 displacement transducer was calibrated and showed excellent linear response charac-
 teristics (0 ? 26%) and high sensitivity (12% volt) .  The plunge displacement is measured
 using another RVDT which measures the motion of the upper support block .  The flap
 rotational motion relative to the main wing is measured by a micro-RVDT which is
 mounted on the flap axis inside of the main wing .  These three measurement signals are
 independent of one another .

 The output from these transducers is amplified and sent to an SD  380 signal analyser
 and directly recorded on a MacIntosh IIci computer .  The data acquisition system
 includes an NB-MIO-16 ,  which consists of a 16-channel analog to digital (A / D) plug-in
 interface board ,  a BNC termination box ,  and LabVIEW data acquisition and analysis
 software .  The digitized response data can be graphically displayed either on-line or
 of f-line as a time history ,  phase plane plot ,  FFT ,  PSD ,  or Poincare ́   map .  In order to
 make a comparison of the theoretical and experimental data ,  a measurement system
 calibration was completed before the wind tunnel test .  The dynamic calibration
 coef ficients were determined by a ground vibration test .

 9 .  PRELIMINARY TEST

 A preliminary test of the flutter model was used to determine the natural frequencies
 and the modal damping of the structure .  There are four major components of the
 vibration test :  excitation ,  measurement ,  recording and analysis .  An auto-sweeping
 sinusoidal signal is provided by an SD  380 signal analyser .  A Bru ̈  el and Kjaer (B&K)
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 Figure 5 .  Schematic of a portion of the wing-aileron assembly showing the leaf spring-freeplay
 configuration used in the experimental model .

 4810 mini-shaker and a B&K 2706 power amplifier are used to excite the model .  The
 drive point is placed at the mid-span and the quarter-chord of the main wing section .  A
 B&K 8200 force transducer is used to measure the force at the joint between the
 mini-shaker and the model .  A B&K 2635 charge amplifier is used to provide signal
 conditioning and amplification of the force signal .

 The output response signals include the plunge displacement ,  pitch angle of the main
 wing and the flap rotational motion from the three transducers .  They are connected to
 the SD  380 input channels .  A transfer-function analysis between the input force and
 output responses is completed by the SD  380 for the 0 – 50  Hz frequency range ,
 averaging over 10 cycles and using a Hanning window .  From the transfer function ,  the
 coupled natural frequencies for the pitch ,  plunge ,  and control surface motion were
 determined .  In addition to the three primary degrees of freedom ,  the experimental
 model has the potential to exhibit a fourth degree of freedom (roll) due to out-of-phase
 plunging motion between the upper and lower supports .  However ,  the results show
 that this motion is negligible .  A complete listing of the system parameters for the
 experimental model is given in Table A . 1 (in Appendix A) .

 The structural damping for the system was determined by isolating each of the three
 degrees of freedom and providing an initial disturbance in the absence of a freestream .
 The time histories of the decaying oscillations was recorded ,  from which standard
 logarithmic-decrement calculations were made (Thomson 1988) .  The calculated damp-
 ing ratios were treated as uncoupled modal values in the numerical model ,  as discussed
 in Section 3 .

 10 .  EXPERIMENTAL FLUTTER

 Prior to obtaining the results to be presented shortly ,  the structural inertia ,  stif fness ,
 damping and frequency data for the experimental model were measured .  The structural
 stif fnesses in the pitch and flap degrees of freedom are provided by single ,  small-
 diameter leaf-springs .  The structural stif fness for the plunging motion is provided by
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 T ABLE  1
 Natural frequencies ,  flutter speeds and frequencies .  The percentage

 dif ference is calculated relative to the experimental values

 Numerical  Experimental  % Dif ference

 v a   (coupled)
 v b   (coupled)
 v h   (coupled)

 9 ? 218  Hz
 19 ? 442  Hz
 4 ? 455  Hz

 9 ? 125  Hz
 18 ? 625  Hz
 4 ? 375  Hz

 1 ? 02%
 4 ? 39%
 1 ? 82%

 Flutter speed
 Reduced velocity
 Flutter frequency

 23 ? 9  m / s
 3 ? 249
 6 ? 112  Hz

 20 ? 6  m / s
 2 ? 825
 5 ? 47  Hz

 15 ? 0%
 15 ? 0%
 11 ? 74%

 two bi-cantilevered leaf springs which support the model on either end .  During linear
 modal flutter testing ,  great caution must be exerted to avoid damaging the model .
 While uncontrolled growth in the response amplitude at or near the flutter speed is
 obviously undesirable ,  the use of physical ‘‘stops’’ to limit the range of motion can also
 lead to problems .  The forces encountered in divergent flutter can reach very high
 levels ,  which means that the force imposed on the model by physical stops can also be
 quite high .  The specific vulnerability in this particular experimental model is the
 relatively small diameter ,  steel-wire leaf-spring which provides torsional stif fness for
 the pitching motion .  The forces encountered near flutter ,  or the forces imposed by
 flutter stops ,  may cause plastic deformation or even microscopic cracking which can
 change the spring stif fness characteristics .

 Similar problems are also encountered during the nonlinear testing .  The amplitude
 response curves are obtained by the path-following techniques described in Section
 11 . 2 .  A complete sweep ,  in one direction ,  through the chosen range of freestream
 conditions typically requires a minimum of 30 – 45  min ,  during which time the model is
 undergoing limit-cycle oscillations .  While the amplitude of the motion may be
 relatively small ,  degradations in the stif fness characteristics of the pitch-spring could
 also result from fatigue ,  as well as temperature ef fects .  The coupled natural frequencies
 given in Table 1 (see Section 11) represent the values obtained prior to the nonlinear
 testing .  These values were measured again upon completion of the linear tests and
 were found to be :   v a  5  8 ? 125  Hz ,   v b  5  18 ? 25  Hz ,  and  v h  5  4 ? 25  Hz .  The coupled
 natural frequencies have decreased by 12 ? 3 ,  2 ? 05 ,  and 2 ? 94% ,  respectively most likely
 due to changes in the torsional stif fness for the pitch degree of freedom ,  which could
 explain some of the discrepancy between the numerical and experimental flutter
 boundaries .

 11 .  RESULTS

 11 . 1 .  F LUTTER  T EST   OF   THE  L INEAR  S YSTEM

 The nominal values for the inertial ,  stif fness and damping parameters of the
 experimental system were measured and used as input to the numerical model .  A
 summary of the system parameters is given in the Appendix A .  A comparison of the
 key dynamical characteristics for the numerical and experimental systems is given in
 Table 1 .  The nonlinear results given in the following section were actually completed
 prior to the linear flutter tests in an attempt to prevent significant changes in the system
 parameters or even potential failure ,  should divergent flutter be encountered during
 the linear experimental model testing .
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 Figure 6 .  Average damping in the plunge mode versus (a) absolute freestream velocity and (b) fraction of
 respective flutter speed for the experimental system and the numerical model (based on logarithmic
 decrement ,   z  <  [log  ( h 1 / h 2 )] / (2 π  )) ,  and damping based on the real part of numerical eigenvalues (normalized
 by the numerical in-vacuo coupled natural frequency in plunge) for the nominal linear system .   ?  ?  ?  ?  ,
 2 Re  ( l ) / v h ;   — e — ,  numerical log decrement ;  -  -  e  -  - ,  experimental log decrement ;  —  –  —  p  ,  extrapolated .

 The measured time history data of the flutter model under an initial disturbance are
 recorded .  For each channel ,  4000 sample points of the time data are acquired .  The
 sample rate is 800 points / s .  The average damping ratio based on logarithmic decrement
 calculations for the plunge degree of freedom is plotted as a function of freestream
 velocity in Figure 6 .  The motion recorded in the plunge time history is not independent
 of the pitch and flap motion ,  which means that the calculated damping is a coupled
 value .  Time history data are recorded for speeds below the predicted flutter speed .

 The average modal damping values obtained for the experimental system correspond
 to the real part of the linear  A  matrix eigenvalues in the numerical model ,  though the
 magnitude may dif fer from the value determined for the experimental value of
 modal damping .  The trends displayed by the real part of the eigenvalues and the
 measured damping values should be similar .  Linear flutter occurs when the overall
 system damping becomes negative ,  i . e .,  the freestream adds energy to the system rather
 than dissipating energy .  Figure 6(a) shows that there is approximately a 15% dif ference
 in the predicted flutter speed based on numerical eigenanalysis and the results of the
 experimental flutter tests .  While there is some margin for error in the measurement of
 the experimental parameters used as input to the numerical model ,  the most likely
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 source of this error is in aerodynamic ef fects that are not modeled by the Theodorsen
 model and by three-dimensional aerodynamic ef fects that may be present in the wind
 tunnel .

 Aerodynamic corrections and more complicated aerodynamic models can be
 incorporated into the theoretical development .  One of the goals in the development of
 this numerical model ,  though ,  is to see how well the basic model predicts the system
 behavior ,  without corrections that are specific to the particular wing section and wind
 tunnel or the use of additional aerodynamic states .  In order to compare the numerical
 and experimental results on an equivalent basis ,  a normalization based on the linear
 flutter speed has been carried out .  Because nonlinearities such as freeplay are often
 linearized or simply ignored in theoretical models ,  the primary reason for the inclusion
 of freeplay in this numerical model is to compare the response of the system with
 freeplay to the ‘‘same’’ system without freeplay .  Therefore ,  the freestream velocities
 have been normalized by the respective linear flutter speed for each model .  Figure 6(a)
 shows the damping in the plunge mode of the linear system as a function of absolute
 freestream velocity .  Figure 6(b) shows the same information after normalizing the
 velocity scale for each curve by its respective measured linear flutter speed (or
 predicted flutter speed) .

 Figure 6 shows three curves representing the log decrement calculations based on the
 plunge mode for the experimental and numerical models ,  as well as the real portion of
 the numerical eigenvalue for the plunge mode ,  normalized with respect to the  in  y  acuo
 coupled natural frequency for plunge .  The plunge modal damping increases and then
 decreases as the velocity increases .  There is a damping maximum in all three curves
 around 70 – 80% of their respective linear flutter speed ,  as shown in Figure 6(b) .  The
 structural portion of the damping is of the order of 1% (of critical) throughout the
 range of freestream conditions .  The maximum experimental damping value is about
 4% ,  which is dominated by the aerodynamic damping .  The damping change near the
 divergent flutter velocity is abrupt ,  and the final point on the experimental curve has
 been extrapolated based on a curve fit of the pre-flutter data .  Above the flutter speed ,
 the motion is a rapidly divergent oscillation .

 The imaginary part of the eigenvalue relates directly to the frequencies of oscillation
 for the system .  Figure 7 shows how the pitch and plunge frequencies of the numerical
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 Figure 7 .  Numerical frequencies of oscillation for the linear system .  The numerical flutter boundary is
 indicated by the vertical line .
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 model begin to approach each other as the system nears the flutter boundary .  The
 experimental system shows a similar response ,  which is characterized by a flutter
 frequency that is between the pitch and plunge natural frequencies .  It is also clear from
 the damping figures that the experimental and numerical systems exhibit the same
 qualitative behavior .

 11 . 2 .  F LUTTER  T EST   OF   THE  N ONLINEAR  S YSTEM

 Comparisons between theory and experiment have been made for varying amounts of
 control surface freeplay .  Three freeplay configurations are studied experimentally ,
 corresponding to freeplay regions of  Ú 1 ? 15 8 ,   Ú 1 ? 83 8  and  Ú 2 ? 12 8  (Gap 1 ,  Gap 2 and
 Gap 3 ,  respectively) .  The initial pitch angle of the model is zero .  The model is placed in
 the wind tunnel such that the control surface is resting at one edge of the freeplay
 region .  As the airflow in the tunnel is increased ,  this nonzero initial condition in the
 flap serves to excite the system ,  causing the wing to settle into a steady-state limit cycle .
 Transients are allowed to decay ,  and the motion of each degree of freedom is recorded
 in the form of time histories .  The freestream velocity is slowly increased to a new
 value ,  and the process is repeated .  The behavior of the system is examined at a variety
 of freestream conditions below the linear flutter speed .  A similar path-following
 approach is used numerically ,  and all of the experimental and numerical results shown
 in Figure 8 are obtained by path-following .
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 Figure 8 .  Numerical (lines) and experimental (points) normalized steady-state r . m . s .  amplitude for the (a)
 pitch and (b) flap displacements .  Symbols are the same for (a) and (b) .
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 Figure 8 ( cont ) .  (c) Normalized stready-state r . m . s .  plunge amplitude and (d) steady-state frequency ;
 symbols as in (a) and (b) .

 It can be shown analytically that the response of the nonlinear systems scale with the
 size of the freeplay region .  As a result ,  the numerical results ,  lie on a ‘‘universal’’
 curve .  The amplitude data for the nonlinear systems have been normalized by the size
 of the freeplay region and by the airfoil semi-chord ,  in the case of the plunge data .  The
 amplitudes shown are based on root-mean square (r . m . s . ) calculations over several
 complete cycles of the numerical and experimental steady-state time histories .
 Equation (7) was used to obtain the r . m . s .  amplitudes :

 Amp r . m . s .  5 – 1
 T
 O i 5 n

 i 5 1
 y 2

 i  ( D t ) i  .  (7)

 Since the motion within the freestream regime from approximately 0 ? 32 U f   to 0 ? 44 U f   is
 predominantly nonperiodic ,  the same definition for the r . m . s .  amplitude cannot be
 used .  Therefore ,  where points are plotted on the numerical curves in Figure 8(a) – (d) ,
 the motion can be assumed purely periodic ,  and the sections in which discrete points do
 not appear can be assumed nonperiodic .

 Four distinct regions of pre-flutter steady-state oscillatory behavior are found
 experimentally ,  three of which are seen most clearly in Figure 8(b) .  For velocities
 between 0 and approximately 18% of the numerical linear flutter speed (23% of the
 experimental) ,  giving the model an initial disturbance results in oscillations which damp
 out to zero fairly quickly .  At  U  <  0 ? 18 U f  (0 ? 23 U f  ) ,  there is a discrete jump from the
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 Figure 9 .  Experimental (solid) and numerical (dotted) (a) pitch ,  (b) flap and (c) plunge time histories for
 the low frequency limit-cycle behavior in the period-1 flap region for Gap 3 ,   d  5  Ú 2 ? 12 8 ;   U  5  0 ? 27 U f .

 rest state to a low frequency limit cycle that is characterized by simple periodic
 oscillations in the control surface degree of freedom .  Figure 9 shows an example of the
 experimental and numerical time series for this limit-cycle behavior .  There is a slight
 dif ference between the oscillation frequencies of the two models [see Figure 8(d)] ,  but
 the numerical results do predict both the qualitative and quantitative behavior found
 experimentally fairly accurately .  Note that all of the time series presented in this
 section are for an arbitrary 1  s window which is applied well after both the numerical
 and experimental systems have reached steady-state .  The time series shown in Figure 9
 is phase-shifted so that the nature of the two responses can be seen .  Since there are
 dif ferences in the frequencies of oscillation between the numerical and experimental
 models ,  it is not necessary to pay especially close attention to the relative phases of the
 corresponding time series .

 The system displays the simple low frequency behavior until the speed reaches
 approximately 35% (37%) of the linear flutter speed .  At this point ,  the system loses
 periodicity over a window of freestream conditions ,  indicated by the vertical lines in
 Figure 6 .  At approximately 44% (48%) the motion again becomes periodic and the flap
 motion settles into a more complex low frequency limit cycle .  The transition to the
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 Figure 10 .  Experimental (solid) and numerical (dotted) (a) pitch ,  (b) flap and (c) plunge time histories for
 the low frequency limit cycle behavior in the period-2 flap region for Gap 3 ,   d  5  Ú 2 ? 12 8 ;   U  5  0 ? 49 U f .

 more complex flap motion results in an increased amplitude in all three degrees of
 freedom ,  as seen in Figure 8(a) – (c) .

 Characteristic experimental and numerical time series for the flap motion at the end
 of the transition region are given in Figure 10 .  A wide variety of initial disturbances
 were applied to the experimental system and ,  in each case ,  the system settled into the
 same limit-cycle behavior .  Due to the potential danger of damaging the experimental
 model ,  no excessively large initial conditions were examined .  The limit cycle shown in
 Figure 10 is also found to be the only stable limit cycle over the same range of
 freestream velocities in the theoretical model .

 At a velocity of approximately 0 ? 50 U f  (0 ? 55 U f  ) ,  there is another abrupt change in the
 systems behavior .  The low frequency limit cycle suddenly becomes unstable ,  and the
 system is attracted to a stable ,  high-frequency limit cycle .  There is a dramatic drop in
 the plunge amplitude at this point .  The pitch amplitude also drops at this point and
 then grows again as the speed increases ,  while the flap amplitude jumps up and remains
 fairly constant (see Figure 8) .  Figure 11 shows that the high frequency flap motion
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 Figure 11 .  Experimental (solid) and numerical (dotted) (a) pitch ,  (b) flap and (c) plunge time histories for
 the high frequency limit cycle behavior in the period-1 flap region for Gap 3 ,   d  5  Ú 2 ? 12 8 ;   U  5  0 ? 73 U f  .

 returns to a ‘‘simple’’ periodic oscillation .  Again ,  a number of perturbations were
 applied ,  each resulting in the same-limit-cycle behavior .  However ,  shortly after the
 onset of this high frequency limit cycle oscillation ,  the transient oscillations are
 characteristic of the more complex flap motion that is present at the high velocity end
 of the low frequency regime (0 ? 35 U f  ,  U  ,  0 ? 55 U f  ) .  From these results ,  it is concluded ,
 experimentally ,  that the limit cycle shown in Figure 10 has become unstable .  The high
 frequency limit cycle is observed for velocities between 55% and 93% of the
 experimental linear flutter speed .  At higher speeds ,  the motion becomes divergent .
 (Note :  Tests were not performed at speeds higher than  U  <  0 ? 93 U f   due to the danger of
 destroying the experimental model . ) Numerical simulations for this set of system
 parameters indicates that the nonlinear divergent flutter speed is within 2% of the
 linear boundary .  Previous studies have shown ,  though ,  that the divergent flutter
 boundary for systems with freeplay nonlinearities is a function of the initial distur-
 bance .  That is ,  the divergent flutter speed may decrease as the initial disturbance to the
 system increases (Breitbach 1977 ;  Woolston  et al .  1957 ;  McIntosh  et al .  1981) .
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 12 .  CONCLUSIONS

 The state-space model developed by Edwards  et al .  (1979) representing the linear
 three-degree-of-freedom typical section has been successfully adapted to include
 structural freeplay .  Using a standard state-space approximation to Theodorsen
 aerodynamics for two-dimensional incompressible flow and applying He ́  non’s method
 to the numerical integration of a piecewise linear system ,  a robust numerical model for
 predicting linear and nonlinear flutter behavior has been constructed and verified
 experimentally .  As shown in the experimental part of this paper ,  the eight-dimensional
 model accurately predicts ,  both qualitatively and quantitatively ,  the nonlinear behavior
 of the experimental model tested in the wind tunnel .  The state-space representation of
 the system will allow for development of a variety of linear control algorithms which
 can be applied to both the numerical and experimental models in order to gain insight
 into the dangers of neglecting structural freeplay when designing a flutter suppression
 control system .

 An experimental model of the three degree-of-freedom aeroelastic typical section
 has been built that successfully simulates a two-dimensional flowfield .  The model
 allows for easy implementation of varying degrees of control surface freeplay .  The
 results presented in this paper show that the model is capable of displaying all types of
 nonlinear behavior predicted theoretically .  The experiments conducted on the limit-
 cycle behavior of the typical section have also shown that the system parameters can be
 af fected as a result of the fatigue associated with extended oscillatory motion .  While
 the problem may be magnified in the context of the wind tunnel testing ,  fatigue is still a
 very real concern in actual flight situations ,  where structural nonlinearities are
 unavoidable .  Earlier versions of this experimental model also showed that a slight
 change in some of the system parameters could lead to other nonlinear phenomena ,
 such as coexisting stable limit cycles .  This behavior was also predicted theoretically .

 It should be noted that both the experimental and numerical work presented in this
 paper serve as a verification and foundation for the next stage of this project ,  which is
 focused on the ef fects of structural nonlinearities on a linear control system .  A control
 system will be added to the experimental model to allow for prescribed movement of
 the control surface .  Specific control algorithms will be formulated based on the nominal
 linear system ,  using the state-space model discussed in this paper .  Examples of
 previous work in aeroelastic control are given in Karpel (1982) ,  Noll  et al .  (1984) ,
 Khargonekar & Rotea (1991) ,  O ̈  zbay & Bachmann (1994) and Lin  et al .  (1995) .
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 APPENDIX A :  PARAMETER DEFINITIONS ,  AND VALUES FOR THE
 EXPERIMENTAL SYSTEM

 The following system parameter definitions have been adapted from Theodorsen (1935) ,  in
 which  r   is the mass of air per unit of volume ,   b  the half-chord of wing ,  and  M  the mass of wing
 per unit of length .

 S a  ,  S b  :  static moments of wing per unit length of wing-aileron (relative to  a ) and aileron
 (relative to  c ) ,  respectively .
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 I a  ,  I b  :  moments of inertia per unit length of wing-aileron and aileron about  a  and  c ,
 respectively .

 C a  ,  C b  :  torsional stif fness per unit length of wing and aileron around  a  and  c ,  respectively .

 C h :  stif fness of wing in deflection per unit length .

 K a  , b  5
 C a  , b

 Mb 2
 reduced  torsional stif fnesses .

 K h  5
 C h

 M
 reduced  stif fness in deflection .

 k  5
 π r b  2

 M
 the ratio of the mass of a cylinder of air having a diameter equal to the chord of
 the wing to the mass of the wing ,  both per unit span .

 r a  5 –  I a

 Mb 2
 the radius of gyration divided by  b .

 x a  5
 S a

 Mb
 the center of gravity distance of the wing from  a ,  divided by  b .

 T ABLE  A . 1
 System parameters for the experimental system

 Geometric parameters

 Chord
 Span
 Semi-chord ,   b
 Elastic axis ,   a  w / r / t  b
 Hinge line ,   c  w / r / t  b

 0 ? 254  m
 0 ? 52  m
 0 ? 127  m

 2 0 ? 5
 0 ? 5

 Mass parameters

 Mass of wing
 Mass of aileron
 Mass / length of wing-aileron
 Mass of support blocks

 0 ? 62868  kg
 0 ? 18597  kg
 1 ? 558  kg / m
 0 ? 47485  3  2  kg

 Inertial parameters

 S a   (per span)
 S b   (per span)
 x a

 x b

 I a   (per span)
 I b   (per span)
 r a

 r b

 k

 0 ? 08587  kg  m
 0 ? 00395  kg  m
 0 ? 434
 0 ? 01996
 0 ? 01347  kg  m 2

 0 ? 0003264  kg  m 2

 0 ? 7321
 0 ? 11397
 0 ? 03984

 Stif fness parameters

 K a   (per span)
 K b   (per span)
 K h   (per span)

 1486  l / s 2

 155  1 / s 2

 1809  l / s 2

 Damping parameters

 z a   (log-dec)
 z b   (log-dec)
 z h   (log-dec)

 0 . 01626
 0 ? 0115
 0 ? 0113
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 v #  a  5 – C a

 I a

 the uncoupled natural frequency of torsional vibration around  a .

 r b  5 –  I b

 Mb 2
 the  reduced  radius of gyration of the aileron divided by  b ,  that is ,  the radius
 at which the entire mass of the airfoil would have to be concentrated to
 give the moment of inertia of the aileron ,   I b  .

 x b  5
 S b

 Mb
 the  reduced  center of gravity distance from  c .

 v #  b  5 – C b

 I b

 the uncoupled natural frequency of torsional vibration of the aileron around
 c .

 v #  h  5 – C h

 m
 the uncoupled natural frequency of the wing in deflection .

 APPENDIX B :  NOMENCLATURE

 The following is a list of symbols used in the body of the paper .

 Scalars

 A  nondimensional nonlinear pitch displacement ( a  / d  )
 b  semi-chord
 B  nondimensional nonlinear flap displacement ( b  / d  )
 h  plunge displacement
 H  nondimensional nonlinear plunge displacement ( h  / ( b d  ))
 m  modal mass
 T  period of oscillation
 U  freestream velocity
 y  dummy displacement variable
 a  pitch displacement
 b  control surface displacement
 d  size of freeplay region
 D t  time step
 v  natural frequency
 z  modal damping ratio

 Vectors & Matrices

 a  ‘‘of fset’’ vector associated with freeplay
 A  state coef ficient matrix
 B  control coef ficient matrix
 D ,  E 1 ,  E 2 ,  F a  aerodynamic approximation matrices
 G  control input submatrix
 K  stif fness submatrix
 M  mass submatrix
 x  state vector [ a  ,  b  ,  h ] T

 x ̂  full state vector [ x ,  x ~  ,  x a ] T

 Subscripts

 f  linear flutter value
 mod  modal value
 r . m . s .  root-mean-square value
 s  structural component of state-space matrices
 tot  total value ,  including structural and aerodynamic components
 h ,  a  ,  b  plunge ,  pitch ,  control surface


